

Química

APL 3.1 Identificação de plásticos através de testes físico-químicos

Índice

Introdução	2
Material e Reagentes	3
Procedimento	4
Perigos específicos e conselhos de segurança	7
Resultados	8
Conclusão	9
Bibliografia	10

Introdução

O processo de reciclagem mecânica dos plásticos implica a separação destes por tipo de plástico. Este processo não é simples dado que a maioria dos produtos de plástico são misturas de diferentes tipos de plásticos.

A questão que se coloca agora é a de como se podem diferenciar os vários plásticos para que se possam reciclar.

Os plásticos mais usuais são os HDPE, o LDPE, o PP, o PVC, o PS e o PET. Estes seis materiais perfazem 85% dos plásticos utilizados em todo o mundo. Estes plásticos são identificados pelos seguintes símbolos:

A identificação de plásticos pode ser feita laboratorialmente, através de testes Às propriedades físico-químicas.

A densidade é uma propriedade que permite distinguir diferentes plásticos. Pode-se recorrer à técnica de flutuação para fazer uma determinação aproximada da densidade dos materiais. Esta técnica permite, de forma simples, comprar a densidade de materiais diferentes. Por exemplo, para distinguir entro HDPE e LDPE, basta colocar duas pequenas amostras numa proveta com uma solução de densidade 0,93g cm-3 e observar que o material mais denso (HDPE) se deposita no fundo da proveta e o menos denso (LDPE) flutua à superfície da solução.

A solubilidade, a determinação da temperatura de fusão/amolecimento ou a inflamabilidade dos materiais são outras propriedades físico-químicas que nos permite ajudar a distinguir entre dois plásticos diferentes.

Esta atividade laboratorial desenvolve-se a partir da seguinte questão-problema:

Como se pode identificar um plástico no laboratório?

Material

- ρ 3 Copos de 100 mL
- ρ Vareta de vidro
- ρ Placa de aquecimento
- ρ Pinça

Reagentes

- ρ Acetona
- ρ Álcool isopropílico
- ρ Água destilada
- ρ Lamparina
- ρ Corante alimentar
- ρ Fio de cromoníquel
- ρ Óleo de milho

Procedimento

1. Testes de densidade:

a. Em água

Selecionar uma amostra de cada tipo de plástico e coloca-la num copo de 100mL com 50mL de água destilada.

Agitar com uma vareta. Deixar repousa.

b. Em álcool isopropílico

Misturar 20mL de álcool isopropílico a 70% com 7,5mL de água destilada num como de 50mL.

Colocar uma gota de corante alimentar para não haver confusão com o copo da água.

Introduzir a amostra de plástico, agitar com uma vareta e deixar repousar.

c. Em óleo de milho

Colocar 20mL de óleo de milho, num copo de 50mL. Introduzir a amostra de plástico, agitar com uma vareta e deixar repousar.

2. Testes de chama

Usar um fio de cromoníquel e colocar na sua extremidade a amostra de plástico. Levar o plástico à chama de um bico de Bunsen ou Mecker.

A presença de uma chama verde indica a existência de cloro no plástico.

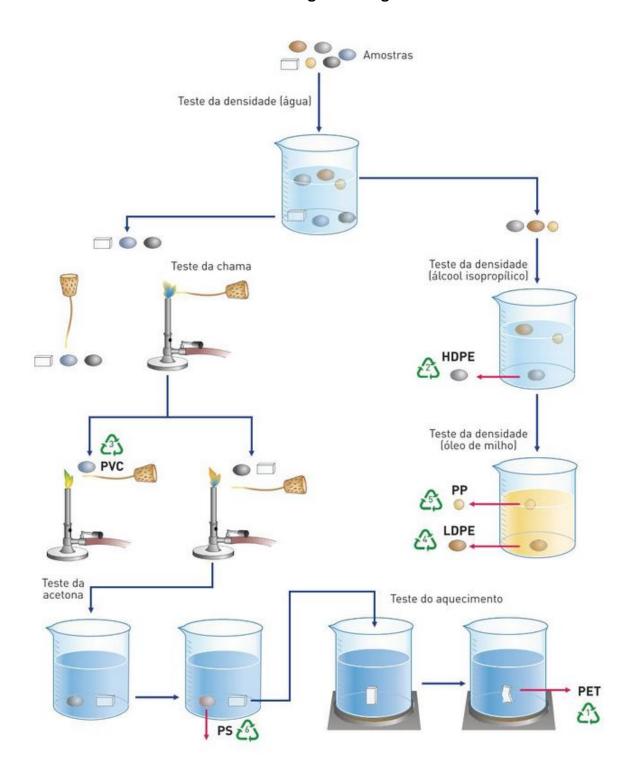
A presença de chama de outra tonalidade não é conclusiva.

3. Testes de acetona

Colocar 20mL de acetona num copo de 50mL.

Introduzir a amostra de plástico, agitar com uma vareta de deixar repousar. Um dos plásticos fica com a cor mais clara e suave ao tique (PS)

4. Teste de aquecimento


Colocar 25mL de água num copo de 50mL. Levar à fervura.

Introduzir a amostra de plástico com o auxilio de uma pinça e verificar se o plástico amolece ou não.

Preencher o seguinte quadro.

Tipo de plástico	Opaco/transparente	Cor	Rugoso/macio	Rígido/flexível
PET	Transparente		Macio	Flexível
HDPE	Орасо	Branco	Macio	Pouco flexível
PVC	Transparente		Macio	Rígido
LDPE	Орасо	Branco	Macio	Flexível
PP	Орасо	Branco	Macio	Pouco flexível
PS	Орасо	Branco	Macio	Flexível

Identificar cada amostra através do seguinte diagrama de "marcha".

Perigos específicos e conselhos de segurança

Mais informação sobre segurança aqui.

Resultados

Tipo de	Teste de densidade		Teste de	Teste	Teste de	
plástico	Em água	Em álcool isopropílico	Em óleo de milho	aquecimen to	de chama	acetona
PET	Não flutua	Não flutua	Não flutua	Não alterou	Laranja	Não alterou
HDPE	Flutua	Não flutua	Não flutua	Não alterou	Laranja	Não alterou
PVC	Não flutua	Não flutua	Não flutua	Não alterou	Laranja	Não alterou
LDPE	Flutua	Flutua	Não flutua	Não alterou	Laranja	Não alterou
PP	Flutua	Não flutua	Não flutua	Não alterou	Laranja	Não alterou
PS	Não flutua	Não flutua	Não flutua	"Derreteu"	Laranja	Não alterou

Conclusão

Como se pode verificar pela tabela de resultados, não se obteve os resultados que eram esperados por análise do diagrama de "marcha". No álcool isopropílico o HDPE é o único que, no diagrama, não flutua mas observámos que nenhum flutuava exceto o LDPE. No teste com o óleo de milho nenhum plástico flutuou, isto poderá ser devido à utilização de um óleo que não era de milho. No teste de aquecimento o PS ficou mais mole enquanto que no diagrama isso acontece ao PET. No teste da chama não houve qualquer alteração na cor da chama. E no teste da acetona também não houve alterações nos nossos plásticos e no diagrama o plástico PS sofre alteração.

Bibliografia

SOBRINHO SIMÕES, Teresa; ALEXANDRA QUEIRÓS, Maria; OTILDE SIMÕES, Maria - <u>Ontem e Hoje – Química 11</u>. Porto: Porto Editora, 2013

http://educa.fc.up.pt/ficheiros/fichas/1152/Manual%20Identificacao%20de%20plasticos%20.pdf